

КОТЛЫ ВОДОГРЕЙНЫЕ СТАЛЬНЫЕ ТЕПЛОПРОИЗВОДИТЕЛЬНОСТЬЮ 0,3, 0,4, 0,63 и 0,8 МВт на твердом топливе

ARCUS SOLIDA-300K (КД), ARCUS SOLIDA-400K (КД), ARCUS SOLIDA-630K (КД), ARCUS SOLIDA-800K (КД)

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ИКЗ.302141.34 РЭ

СОДЕРЖАНИЕ

	Введение	2
1	Назначение изделия	3
2	Технические характеристики и параметры	4
3	Состав изделия и комплект поставки	6
4.	Устройство и принцип работы	6
5.	Указания мер безопасности	9
6.	Подготовка агрегата к работе	9
7.	Порядок работы	10
8.	Техническое обслуживание	14
9.	Указания по применению	16
10.	Гарантии изготовителя	17
11.	Утилизация	17
12.	Дополнение к руководству по эксплуатации (для котлов с водоохлаждае-	
	мой уголковой решеткой)	17

ВВЕДЕНИЕ

Руководство по эксплуатации предназначено для ознакомления с конструкцией водогрейных котлов на твердом топливе типа ARCUS SOLIDA-300К(КД), ARCUS SOLIDA-400К(КД), ARCUS SOLIDA-630К(КД) и ARCUS SOLIDA-800К(КД) (КВр-0,3К(КД), КВр-0,4К(КД), КВр-0,63К(КД) и КВр-0,8К(КД)) с их техническими характеристиками, с указаниями по монтажу и эксплуатации.

При монтаже, пуске и эксплуатации водогрейных котлов необходимо пользоваться следующей документацией:

- а) технической документацией на конкретный водогрейный котел (сборочными чертежами на котел, заданием на фундамент, электрическими схемами, паспортом на котел):
- б) эксплуатационной документацией на покупные и комплектующие изделия, а также на вспомогательное оборудование по проекту котельной;
- в) "Правилами устройства и безопасной эксплуатации паровых котлов с давлением пара не более 0,7 кгс/см², водогрейных котлов и водоподогревателей с температурой нагрева воды не выше 115 °C";
 - г) "Правилами устройства электроустановок" (ПУЭ);
 - д) "Правилами технической эксплуатации тепловых энергоустановок".

1. НАЗНАЧЕНИЕ ИЗДЕЛИЯ

Котлы водогрейные ARCUS SOLIDA-300К(КД) (КВр-0,3К(КД)), ARCUS SOLIDA-400К(КД) (КВр-0,4К(КД)), ARCUS SOLIDA-630К(КД) (КВр-0,63К(КД)) и ARCUS SOLIDA-800К(КД) (КВр-0,8К(КД)) - устройства, оборудованные топкой и обогреваемые продуктами сгорания сжигаемого в ней топлива с целью получения горячей воды, находящейся под давлением выше атмосферного. Котлы предназначены для применения, как в стационарных котельных, так и в модульных транспортабельных котельных установках по теплоснабжению объектов жилищно-коммунального хозяйства.

Котлы изготавливаются в соответствии с требованиями ГОСТ 30735- 2001, ГОСТ 21563- 93, ТУ 25.21.12-01-68263952-2017 и соответствуют требованиям ТР ТС 010/2011, ТР ТС 032/2013.

Сертификат соответствия рег. № ТС RU C-RU.MO10.B.02984 Срок действия с 11.01.2018 по 10.01.2023г. Сертификат соответствия рег. №ТС RU C-RU.MO10.B.02979 Срок действия с 11.01.2018 по 10.01.2023г.

Конструктивным отличием и значительным преимуществом котлов, в сравнении с аналогичными типами, является скоростное спиральное закручивание водяного потока в трубах котла по всей их длине, исключающее отложение накипи на внутренних стенках труб и позволяющее использовать для подпитки котлов воду с показателем общей жесткости до 1,2 мг-экв/кг и значением рН 10 и менее без предварительной химической подготовки. Данный эффект работает при соблюдении номинального расхода воды через котел, при несоблюдении условия происходит отложение накипи.

Допускается использовать котлы для обеспечения нужд ГВС, при этом качество питательной воды должно соответствовать ГОСТ 2874 «Вода питьевая».

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ПАРАМЕТРЫ

Таблица 1

таолица т				
Наименование параметра	ARCUS	ARCUS	ARCUS	ARCUS
	SOLIDA-300		SOLIDA-630	SOLIDA-800
	К(КД)	К(КД)	К(ҚД)	К(КД)
1. Тип котла – водогрейный, стальной, прямоточный, с уравновешенной тягой, в легкой натрубно				
обмуровке по наружн	ым ограждак	ощим поверхно	стям.	
2. Вид топлива:				
- расчетное топливо - грохоченный каменн			T 25543;	
- <i>резервное топливо</i> - бурый уголь, крупные			1	1
3. Теплопроизводительность номинальная	0,3 (0,25)	0,4(0,34)	0,63(0,54)	0,8(0,69)
* МВт (Гкал/ч)				
4. КПД, %, не менее *	78	78	81	81
5.Температура воды на выходе из котла,			95	
°C		,		
6. Максимальная температура нагрева во-		1	15	
ды, °С, не более			10	
7. Температура воды на входе в котел, °C,		ı	60	
не менее			00	
8. Рабочее давление, МПа, не более		(0,6	T
9. Расход воды через котел, м³/ч:				
- номинальный	11	14	21,7	30
- минимальный	9	10	18	25
10. Гидравлическое сопротивление котла,				
кПа, не более	120	120	150	150
11. Аэродинамическое сопротивление га-				
зового тракта, Па, не более	100	140	180	180
12. Номинальное разрежение в топке, Па,		20	50	
13. Внутренний объем труб котла, м³	1,22	1,4	1,91	2,0
14. Объем топочного пространства, м ³	1,24	1,24	2,37	2,5
15. Поверхность нагрева, м² общая	25,5	31	45	55
16.Температура дымовых газов на выходе				
из котла, °С		170	250	
17. **Тип топочного устройства-			200	
топка ручная, предлагаемые варианты				
поставки:				
- с решеткой водоохлаждаемой типа РОУ;	+	+	+	+
- с плитчатыми горизонтальными колос-				
никами.	+	+	+	+
18. Содержание нормативных вредных вы-				
бросов в сухих уходящих газах при работе				
котла на расчетном топливе:				
- оксида углерода СО, мг/м³;	3600	3600	2750	2750
- оксида азота в пересчете на NO ₂ , мг/ м ³ ;	500	500	500	500
- твердых частиц, кг/ч.	0,2	0,26	0,3	0,3
19. Массовый расход уходящих газов, кг/с:				
- при номинальной теплопроизводитель-				
ности;	0,16	0,21	0,31	0,39
- при минимальной теплопроизводитель-				
ности.	0,08	0,11	0,12	0,16
20. Расход угля при Q _н р= 6000 ккал/кг, кг/ч	55	73	112	142
21. Класс котла	1(2)	1(2)	1(2)	1(2)
22 Срок службы, лет, не менее	. (~)		10	· \~/
23. Назначенный срок хранения, лет			2	
24. Назначенный ресурс, ч	30000			
25. Присоединительные размеры:				
20. приосодинитольные размеры.	<u>i</u>	<u> </u>		I

- по водяному тракту, мм	80	80	100	100
- газохода, мм	400x286	400x286	508x200	508x300
26. Габаритные размеры по обмуровке,				
MM:				
- длина	1800	2060	2450(2535)	2840
- ширина	1630	1630	2020	2020
- высота	2070	2070	2350	2350
27. Масса котла, кг	2590	2940	4200	4910
	(2640)	(2990)	(4250)	(4960)
		(3150)	(4100)	(4770)

^{*}Номинальная теплопроизводительность и КПД указаны при работе котла с полумеханической топкой на расчетном топливе - грохоченном каменном угле класса 2СС, A^p =20%, W^p =10%, Q_H =6000 ккал/кг.

При работе котла на рядовом каменном угле или на резервных видах топлива теплопроизводительность и КПД котла снижаются согласно ГОСТ 30735- 2001, расход топлива увеличивается.

** Технические характеристики котла, в зависимости от типа топочного устройства, указаны в техническом описании для комплекта конкретной поставки.

Расчетные параметры топок при номинальной нагрузке

Таблица 2

Параметры	Тип ручной топки			
	Решетка с плитчатыми горизонтальными колосниками	Решетка водоохлаждаемая уголковая (РОУ)		
	Каменный уголь	Каменный уголь		
Тепловое напряжение зерка- ла горения, кВт/ м²	870	900		
Тепловое напряжение топочного объема кВт/ м³	440	440		
Давление воздуха под решет- кой, кПа	0,20,8	0,20,8		
Коэфф-т избытка воздуха	1,4	1,4		
Потери от химического недожога, %	5	5		
Потери от механического недожога, %	8	7		

Котлы не предназначены для работы на пылеугольном топливе с камерным сжиганием. Применение выше названного топлива требует оснащения котлов специальными топочными устройствами и обязательного согласования со специалистами

ООО "Ижевский котельный завод" – разработчиками котлов.

Требования к подготовке сетевой и подпиточной воды

Качество сетевой и подпиточной воды должно удовлетворять следующим нормам: Таблица 3

	Нормы качества			
Показатели	Система теп	Система теплоснабжения		
	Закрытая	Открытая		
Карбонатная жесткость с рН до 8,5, мкг-экв/кг	800	800		
Прозрачность по шрифту, см, не менее	3	30		
Содержание, мкг/кг, не более:				
- растворенного кислорода	5	0		
- соединений железа в пересчете на Fe,	600	300		
Значение рН при 25°C,	от 7 до 11	От 7 до 8,5		
Масла и нефтепродукты, мг/кг, не более	1,0	-		

3. СОСТАВ ИЗДЕЛИЯ И КОМПЛЕКТ ПОСТАВКИ

- 3.1. Изделие состоит из следующих элементов:
- трубной части в виде водотрубных экранов, образующих топочную и конвективную части;
- каркаса с топочной панелью;
- теплоизолирующей обмуровки и наружных панелей обшивки.

3.2. Комплект поставки.

В комплект поставки входят:

-котел в сборе: трубная часть, рама, легкая натрубная обмуровка, топочная панель с загрузочной дверцей, решетка из плитчатых колосников или водоохлаждаемая уголковая решетка; дверцы чисток и золоудаления с закладными рамками;

- -*манометр (класс точности 2,5; диаметр 160 мм, предел измерения 1,0 МПа- 2 шт.;
- *термометры для измерения температуры (пределы измерения 0 160 °C) 2 шт.;
- -*тягонапоромер (класс точности 2,5; -1,0...0 кПа) 2шт;
- *клапан предохранительный Ду50/80- 1 шт.;
- *кран трехходовой муфтовый с фланцем для манометра Ру 1,0МПа, Ду 15 2 шт.;
- *кран шаровый муфтовый Ду 32 и Ду 15(кол-во от модели котла);
- *задвижка клиновая Ру 1,0, Ду 80 2 шт. для котлов 0,3 и 0,4 МВт; для котлов 0,63 и 0,8 МВт Ру 1,0 МПа, Ду 100 -2шт.
- -* дымосос одностороннего всасывания, согласно паспорту на котел;
- -* вентилятор дутьевой центробежный, согласно паспорту на котел;
- -* отмеченное оборудование поставляется по требованию заказчика, как дополнительная поставка.

Примечание. Тягодутьевые машины, КИП и арматура могут быть заменены другими марками с техническими параметрами идентичными указанным параметрам в комплектации.

К изделию прилагается эксплуатационная документация по ГОСТ 2.601, на котел и на комплектующие изделия (КИП, тягодутьевые машины):

паспорт, руководство по эксплуатации.

4. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

4.1 При изготовлении котла используются электросварные и цельнотянутые трубы из Ст20(ГОСТ 10704,ГОСТ 10705,ГОСТ 8732,ГОСТ 8731), листовой материал из Ст20, 09Г2С, ВСт3сп5 (ГОСТ 19903, ГОСТ 14637). Котел состоит из восьми водотрубных экранов. Четырех внутренних: правого и левого боковых, потолочного, заднего топочного, образующих топочное пространство котла. Четырех наружных – правого и левого боковых, потолочного, заднего конвективного, составляющих конвективную систему котельного агрегата. Возможны модификации с установкой дополнительного третьего заднего конвективного экрана и установкой фронтального экрана с одной (двумя) загрузочными дверками.

Каждый экран представляет собой секцию-гребенку из определенного числа горизонтально-параллельных труб Ø 159х4(4,5) мм с шагом 220 мм, заваренных с торцов общим листом и последовательно соединенных между собой тангенциально вваренными в них патрубками, обеспечивающими закручивание водного потока внутри труб.

Скоростное спиральное движение воды в трубах предотвращает отложение солей и образование накипи на внутренней поверхности водяного тракта.

Циркуляция воды в котлах происходит в следующем порядке:

Вода через водоподводящий патрубок подается в трубу заднего конвективного экрана. Затем проходит последовательно через промежуточный и задний топочный экраны, верхний конвективный, левый конвективный, левый топочный, верхний топочный, правый топочный, правый конвективный и фронтальный экраны (см. схему водопотока). Выход горячей воды осуществляется из патрубка фронтального экрана.

Патрубки на входе и выходе из котла, в зависимости от модификации, могут быть расположены как в нижней, так и в верхней части котла.

Для организации дымооборота с целью эффективного отбора тепла уходящих газов в межтрубные пространства экранов (за исключением верхнего топочного) вварены полосы 6x60 мм, а в заднем конвективном экране имеется дымосборный короб с поворотным шибером для регулирования тяги.

Продукты сгорания удаляются также через отверстия, устроенные в межтрубных пластинах боковых радиационных экранов.

Экраны в соответствии с рабочими чертежами собираются в объемную симметричную конструкцию и соединяются между собой переходными патрубками. Сборка топочной и конвективной части котлов обеспечивает пространство между топочными и конвективными экранами, равное 140 мм, для направления газов в горизонтальные газоходы постамента или рамы.

Эвакуация горячих топочных газов происходит следующим образом: продукты сгорания сжигаемого на колосниках топлива, поднимаясь вверх, омывают внутреннюю поверхность боковых и заднего топочных экранов, проходят сквозь верхний топочный экран и отверстия в боковых радиационных экранах растекаются по верхнему конвективному экрану, делятся на два потока.

Каждый поток опускается в пространство между боковыми топочным и конвективным экранами и, стекая вниз, попадает в горизонтальный газоход постамента или рамы. Газовый поток, изменив направление, удаляется по газоходу в постаменте (раме) котла к его задней стенке, затем проходит между задними топочным и промежуточным экранами и поднимается вверх. Далее, опускаясь вниз между промежуточным и задним конвективными экранами, через дымосборный короб с шибером, поток дымососом удаляется в дымовую трубу. Управление шибером вынесено на фронт котла.

В межтрубных полосах фронтального экрана по центру газоходов слева и справа имеются лючки прочистки газоходов, выходящие за листы обшивки и закрываемые крышками. Такие же лючки вварены в пластины, соединяющие задний топочный, промежуточный и задний конвективный экраны. На фронтальном экране имеется импульсная трубка для замера разрежения в топке.

Для подъема котла предусмотрены четыре погрузочные петли.

Основанием котла — в одних случаях служит стальная рама, в других, постамент, который выполняется из кирпича, в соответствии с прилагаемыми чертежами, окна прочистки, дверца выгреба шлака и фланец наддува, входящие в обязательный комплект, вмуровываются в кладку. Перечисленные элементы в конструкции без фундамента, предусмотрены в раме котла. Уплотнение рамок из уголка производится при помощи асбестового шнура, смоченного в жидком глиняном растворе.

Колосниковые чугунные решетки в топке котлов укладываются на раму вдоль первого ряда труб боковых и заднего топочных экранов.

Топочная литая панель с загрузочной дверцей крепится (при помощи болтов с гай-ками) к рамке из уголков на фронтальном экране.

Теплоизоляция котла выполнена из прошивных матов базальтового волокна в 2 слоя. Полотнище укладывается поверх трубной части котла и крепится при помощи проволочных стержней, приваренных к межтрубным полосам и загибаемых после укладки изоляции.

Поверх теплоизоляции на каркас навешиваются листы наружной обшивки, стыкуемые при помощи гнутых уголков, закрепляемых на каркасе самонарезающими винтами.

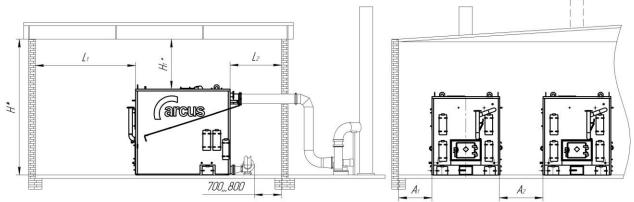
На водоподводящем патрубке, между входной задвижкой и котлом, устанавливаются манометр и термометр, а на выходном патрубке — предохранительный клапан, термометр и манометр.

Приборные вставки (бочонок на входе и тройник на выходе воды) с контрольноизмерительными приборами и предохранительным клапаном устанавливаются в удобном для эксплуатационников месте с вертикальным расположением клапана. Для этого один фланец у бочонка и тройника не приварен, а взят на прихватки. В любом случае между котлом и бочонком, котлом и тройником не должно быть запорных органов. Для слива воды из котла в торцы нижних труб боковых и задних экранов вварены резьбовые патрубки.

Принцип работы агрегата заключается в передаче тепла сжигаемого топлива радиационно-конвективным способом теплоносителю (воде), циркулирующему в системе котел – потребитель – котел, для отопительных целей.

Не рекомендуется прямой водоразбор из системы и пополнение ее холодной водой, что приведет к неизбежному падению тепловой мощности котла и температуры воды на входе-выходе.

- 4.2 По способу установки на месте монтажа котлы имеют два исполнения:
- а) установка на постамент: кирпичный фундамент с газоходами, дверцами чистки, люком золоудаления и фланцем наддува;
- б) без постамента, т.е. установка на подготовленную ровную площадку, например, на металлический пол блок-бокса транспортабельной модульной котельной установки.


При этом котлы имеют несущую раму, в которой выполнены газоходы с

сопутствующими элементами и опорные уголки для установки плитчатых колосников или водоохлаждаемой решетки.

При любом способе установки зазоры между котлом и фундаментом или рамой котла и площадкой установки должны быть тщательно загерметизированы, чтобы исключить подсосы воздуха

4.3 Установочные размеры

Размеры помещения котельной для отопительных котлов КВр-К

Размеры помещения котельной и установочные размеры отопительных котлов КВр-К Таблица 4.

	Размеры котельной, мм					
Типоразмер	Длина	Длина	Высота	Высота	Боковое	Боковое
котла	L1,	L2,	H₁*,	H*,	расстояние	расстояние
КОТЛА	не менее	не менее	не менее	не менее	A1,	A 2,
					не менее	не менее
КВр-0,3К (КД)				4050		
КВр-0,4К (КД)	3000	2000	2000	(2750)	1000	2000
КВр-0,63К (КД)			(700)	4350		
КВр-0,8К (КД)				(3050)		

Для облегчения монтажных, сервисных работ и работ по техническому обслуживанию следует соблюдать рекомендуемые расстояния от стен.

Приведенные значения являются ориентировочными. В зависимости от отопительной установки возможны отклонения.

^{*} Размеры в скобках указаны для котлов, которые сверху не подлежат обслуживанию.

5. УКАЗАНИЯ МЕР БЕЗОПАСТНОСТИ

- 5.1 К обслуживанию котлов допускаются лица, прошедшие медицинское освидетельствование, обученные и имеющие удостоверение на право обслуживания котлов и знающие производственно-должностную инструкцию. К ремонту должен быть допущен только квалифицированный ремонтный персонал, имеющий соответствующие документы к выполняемым видам работ.
- 5.2 Машинист (кочегар, оператор) должен знать устройство и работу, обслуживаемых им котлов, и всего вспомогательного оборудования (питательные насосы, вентиляторы, дымососы и т.п.), схемы трубопроводов и конструкцию топок.
- 5.3 Для обеспечения безаварийной и безопасной работы машинист (кочегар, оператор) должен:
- уметь своевременно выявлять неполадки в работе котлов, вспомогательного оборудования, трубопроводов, арматуры, гарнитуры, а при обнаружении неполадок немедленно их устранять;
- уметь проверять исправность действия манометров, предохранительных клапанов, приборов сигнализации и т.п.;
 - следить за состоянием арматуры, подтягивать пропускающие сальники;
- следить за плотностью фланцевых соединений, состоянием изоляции трубопроводов и котла (окраска, надписи, таблички и др.);
- проверять плотность лазов, люков, лючков, отсутствие течей, а также отсутствие подсосов воздуха в топку, газоходы и т.п.;
- своевременно проверять исправность действия приборов автоматики и безопасности, средств защиты и сигнализации в соответствии с требованиями инструкций по их эксплуатации.
- 5.4 Во время работы котлов запрещается производить любые работы по ремонту элементов, находящихся под давлением.

Все операции с вентилями, кранами и задвижками необходимо выполнять осторожно, не закрывать их с применением рычагов для предотвращения срыва резьбы шпинделей, их изгиба или поломки маховиков.

- 5.5 Рабочее место машиниста (кочегара, оператора) должно быть хорошо освещено рассеянным и нерезким светом; особенно хорошо должны быть освещены показывающие, регистрирующие и другие приборы.
- 5.6 Запрещается оставлять котел без постоянного наблюдения со стороны обслуживающего персонала во время работы котла, а также после его остановки до снижения давления в нем до атмосферного.

6. ПОДГОТОВКА АГРЕГАТА К РАБОТЕ (РАСТОПКЕ)

Работы по монтажу и наладке котла, подбору и установке комплектующего оборудования котла и системы отопления в целом, должны проводиться по проекту, выполненному специализированной организацией, имеющей свидетельство на данный вид работ. При проектировании и монтаже котла рекомендуется обязательная установка фильтра грязевика. Монтаж, настройку и регулировку оборудования (арматуры, приборов КИПиА, систем топливоподачи) осуществляет пуско-наладочная (монтажная) организация.

- 6.1 Перед монтажом котла на месте его установки по периметру выполнить подушки из торкретной массы (огнеупорного бетона и шамотного порошка) толщиной 50 – 60 мм. Котел устанавливается на влажную торкретную подушку, перед дверцами заливка убирается для свободного доступа к ним.
- 6.2 При подготовке вновь смонтированного котла к растопке необходимо произвести обязательную промывку водой котла и питательных трубопроводов от загрязнений, накопившихся в процессе изготовления, транспортирования и монтажных работ.
- 6.3 Для проведения промывки, в конце промываемых трубопроводов, должен быть смонтирован временный сбросной трубопровод, соединенный с канализацией. Длительность промывки должна составлять не менее 30 минут.

- 6.4 Перед промывкой все запорные органы (вентили, задвижки) должны быть полностью открыты за исключением задвижки на напорном патрубке насоса.
- 6.5 По окончании промывки все времянки следует разобрать и трубопроводы восстановить по постоянной схеме. Запорная арматура вскрывается и ревизируется для очистки от загрязнений. Трубную часть котла подготовить к проведению гидроиспытаний (опрессовке).
 - 6.6 В процессе подготовки котла к растопке необходимо:
- осмотреть котел, убедиться в отсутствии повреждений и посторонних предметов в нем;
- убедиться в исправности гарнитуры (топочной и прочистных дверец, колосников, балок и шибера);
- заполнить котел питательной водой, убедившись при этом в исправности и правильном положении запорной арматуры, открыть воздушный кран или предохранительный клапан для выпуска воздуха и водопробный кран;
- проверить исправность контрольно-измерительных приборов, питательных устройств, дымососа, вентилятора, а также наличие естественной тяги;
- проверить набивку сальников задвижек, вентилей, насосов, наличие смазки в масленках тягодутьевых машин и насосов.
- 6.7 Заполнение котла водой следует вести постепенно, до появления воды из воздушников кранов. Температура питательной воды должна быть не ниже 5°С. Продолжительность работы насоса для полного вытеснения воздуха должна составлять не менее 60 минут.
- 6.8 Перед растопкой произвести вентиляцию топки и газоходов котла в течение 10-15 минут, открыв дверцы топки, поддувала, шибера за котлом. Затем на 3 – 5 минут включить дымосос и дутьевой вентилятор.
- 6.9 Применение легковоспламеняющихся материалов (бензин, керосин) для растопки котла категорически запрещается.
- 6.10 Запуск котлов в работу с неисправными приборами (манометры, термометры, предохранительные клапаны), запорной арматурой не разрешается.
- 6.11 Задвижка перед питательным насосом непосредственно перед растопкой должна быть открыта, а предохранительный клапан котла приподнят и подклинен для выпуска воздуха из котла во время заполнения его водой.
- 6.12 Задвижка на напорном патрубке питательного насоса и кран для проб воды должны быть закрыты.
- 6.13 До пуска в работу каждый котел должен подвергаться техническому освидетельствованию, состоящему из наружного и внутреннего осмотра и гидравлического испытания давлением 1,5 Рраб с выдержкой в течение 20 минут. Выявленные дефекты подлежат немедленному устранению.
- 6.14 Для защиты конвективного экрана хвостовой части котлоагрегата от коррозии, рекомендуем внедрять (смонтировать) **линию рециркуляции** сетевой воды. Чтобы температура обратной воды, т.е. воды на входе в котел **была не менее 60 °C.**

7. ПОРЯДОК РАБОТЫ

7.1 Работа по безопасной эксплуатации должна быть организована в соответствии с "Правилами устройства и безопасной эксплуатации паровых котлов с давлением пара не более 0,7 кгс/см², водогрейных котлов и водоподогревателей с температурой нагрева воды не выше 115 °C";

"Правилами устройства электроустановок" (ПУЭ);

"Правилами технической эксплуатации тепловых энергоустановок".

- 7.2 Растопка котла производится следующим образом:
- решетку покрыть ровным слоем крупного угля (размер кусков 40-90 мм);
- при малой подаче воздуха вентилятором (или при открытой дверце поддувала только дымососом без включения вентилятора) разжечь уголь горящим углем, взятым из топки работающего котла, или сухими дровами;

- по мере того, как слой угля разгорится увеличить тягу открытием шибера, поддерживая разрежение в топке 40...60 Па, а в топку забрасывать рядовой уголь;
 - после того, как уголь хорошо разгорится, закрыть дверцу поддувала, включить дутьевой вентилятор и увеличить подачу воздуха.
- 7.3 При сжигании антрацита колосниковую решетку сначала следует покрыть небольшим слоем шлака, на котором и производить растопку горящим углем или дровами.
- 7.4 В первый час работы топки, после ее очистки, нельзя давать сильное дутье. Форсировать топку можно только после образования небольшой шлаковой подушки.

Чтобы избежать дымообразования, химического недожога, спекания шлака и угля, толщина слоя угля должна быть не более 40 мм поверх шлаковой подушки.

7.5 Набрасывание топлива на колосники необходимо производить по возможности быстро, не оставляя долго открытыми топочные дверцы во избежание сильного охлаждения топки, врывающимся в нее воздухом, и увеличения потерь тепла от химически неполного сгорания, а также с уходящими газами.

Заброску топлива следует делать часто, малыми порциями способом «в рассев», т.е. равномерно по всей колосниковой решетке. Недостаток воздуха в первое время после загрузки и избыток воздуха в дальнейшем, будут при частой заброске меньше, чем при более редкой, но крупными порциями. Горение будет идти более равномерно и при меньшем избытке воздуха.

7.6 Правильное и экономичное горение топлива определяется по соломенножелтому цвету пламени и по легкому серому дымку, выходящему из трубы. Если горение не полное, то дым становится черным, а в пламени появляются темные языки.

Во время работы нельзя допускать прогаров, заметных по более яркому цвету слоя, и зашлаковывания, вызывающих потемнение слоя.

При чрезмерном избытке воздуха дым пропадает, а пламя становится ослепительно ярким.

Укорочение пламени означает окончание горения летучих и необходимости загрузки новой порции топлива.

7.7 Подачу воздуха следует регулировать дутьем и тягой, руководствуясь при этом указанными выше признаками или показаниями приборов — газоанализатора и тягонапоромеров. Давление воздуха под решеткой из плитчатых колосников должно находиться в пределах 200–650 Па при температуре подаваемого воздуха не менее 20 °C, и при разрежении в топке от 10 до 30 Па (1-3мм вод. ст.).

Минимальное содержание СО в уходящих газах устанавливается по результатам пуско-наладочных работ.

- 7.8 Для контроля и регулирования работы топки, в проекте котельной должны предусматриваться два тягонапоромера. Один (топочный), показывающий разрежение в топке, другой за котлом.
- 7.9 При отсутствии дутья под колосники, подвод воздуха следует регулировать только изменением тяги (разрежения в топке 20–60 Па или 2-6 мм вод. ст.), т.е. перестановкой дымовой заслонки, а не поддувальными дверцами.
- 7.10 Толщина слоя топлива на колосниковых решетках должна поддерживаться в пределах 40...80 мм, в зависимости от сорта угля, т.е. от теплотворной способности, влажности, выхода летучих и размера кусков. По возможности не допускать «оголение» колосниковой решетки, категорически не допускается горение топлива под колосником из-за возможного перегрева и дальнейшего разрушения колосников.
- 7.11 При работе котла слой шлака на колосниках постепенно увеличивается и тяги (или дутья) становится недостаточно для эффективного горения. Тогда необходимо прорезать шлак, проходя срезкой по прозорам колосников.

Если шлака накопилось так много, что прорезка уже не помогает, необходимо приступить к чистке топки. Чистить топку следует при толщине слоя шлака на решетке не более 200 мм. При этом дутье и тягу, как и при загрузке свежего топлива, отрегулировать так, чтобы разрежение в топке было 5-15 Па (0,5-1,5 мм водяного столба) с тем, чтобы огонь и газы не выбивало из топки, а топка сильно не расхолаживалась.

7.12 Дверцы топок в период между забрасыванием топлива, шуровкой или чисткой, должны быть закрыты и заперты на щеколды.

- 7.13 Для обеспечения эффективной работы дутьевого вентилятора необходимо регулярно удалять золу и шлак из-под колосников (два раза в смену), а также не допускать скапливания золы в газоходах фундамента (рамы) котла, чистку которых производить еженедельно через предусмотренные для этого дверцы в фундаменте (раме).
- 7.14 Обдувку сжатым воздухом или ручную очистку при помощи скребков и щеток газоходов котла между боковыми топочными и конвективными экранами

и экранами экономайзера от сажевых отложений рекомендуется проводить по необходимости, но не реже одного раза в неделю, для чего с фронта котла и на боковых плоскостях экономайзера имеются лючки.

- 7.15 Если в котельной установлена группа котлов, объединенных одним газодымовым трактом, т.е. работающих на один дымосос, то чистку топок следует осуществлять поочередно, прекратив дутье в котел, подвергаемый чистке.
- 7.16 Общие рекомендации по сжиганию различных видов углей (методика сжигания зависит от конкретных условий эксплуатации):

Сжигание бурых углей

Основным условием правильного сжигания бурых углей является обеспечение горящего слоя топлива требуемым количеством воздуха и поддержание высокой равномерной температуры, в топочном пространстве.

Толщину слоя топлива рекомендуется поддерживать 120мм. По мере накопления золы и шлаков на колосниковой решетке сопротивление слоя для доступа воздуха в топку повышается, поэтому для сохранения нормальной работы топки необходимо усиливать дутье.

Сжигание каменных углей

Длиннопламенные угли марки Д загораются быстро, горение их на колосниковой решетке протекает равномерно, шлака обычно не дают. Эти свойства упрощают процесс ведения топки. При сжигании длиннопламенных углей слой топлива должен быть ровный, не толще 150мм.

Сжигание газовых углей марки Г, также как и длиннопламенных углей, не представляет особых затруднений.

Газовые угли Кузнецкого месторождения смачивают водой для улучшения процесса горения. Загрузку угля в топку необходимо вести малыми порциями «в раструску» и по прогарам. Толщину слоя топлива рекомендуется поддерживать 120 мм.

Угли Кемеровского месторождения (Кузнецкий бассейн) имеют легкоплавкую золу, поэтому подготовку топки следует вести порядком, указанным в разделе по сжиганию антрацитов; сжигание этих углей необходимо вести ровным и самым тонким слоем.

Угли марок паровично-спекающиеся (ПС) и слабоспекающиеся (СС) состоят большей частью из мелочи, поэтому рекомендуется сжигать их на колосниковой решетке с малым живым сечением.

Топливо в топку надо забрасывать небольшими порциями по прогарам, а когда топливо горит равномерно по всему слою, то «в раструску» по всей колосниковой решетке. Толщина слоя горящего топлива в топке не должна превышать 100...120 мм.

Для улучшения горения топлива необходимо образующуюся «корку» надламывать, при этом не допускать глубокой шуровки и выворачивания шлака на поверхность слоя. Тощие угли марки Т, как и антрациты, обладая незначительным выходом летучих веществ, сгорают главным образом в слое и по режиму сжигания близки к антрацитам. Тощие угли состоят в большей части из мелочи, а крупные куски при нагревании в топке распадаются также на мелкие куски, за исключением кузнецкого угля. Поэтому при больших форсировках топки и сильной тяге они уносятся в значительном количестве в газоходы, забивая их. Для улучшения сжигания тощего угля к нему добавляют спекающийся уголь марки ПЖ или ПС в размере 15...20 %. Слой тощего угля, имеющего много мелочи, значительно уплотняется, поэтому толщину его (не включая шлаковую подушку) рекомендуется поддерживать 60...80 мм.

Сжигание шлама из каменных углей

Каменноугольный шлам загорается хорошо, при горении дает пламя светлокрасного цвета средней длины; обладает хорошей спекаемостью, снижающей механические его потери; при сгорании образует плотные и рыхлые шлаки, а также в большом количестве золу. Выделение летучих веществ из шлама происходит наиболее активно в период загрузки топлива и в момент шуровки слоя топлива.

Загрузка шлама в топку котла производится через каждые 15...20 мин. ровным слоем. Толщина слоя свежезаброшенного топлива не должна превышать 50...70 мм. В промежутках между загрузками необходимо расшуровывать один или два раза верхний слой шлама.

При длительном хранении шлам высыхает, поэтому для уменьшения уноса в трубу и провала через колосниковую решетку необходимо смачивать его перед заброской в топку до состояния комкования.

Шуровать слой шлама перед чисткой топки не следует, так как необходимо накопить достаточное количество раскаленного кокса и не допустить, чтобы топка погасла.

Сжигание антрацитов

Антрациты, обладая незначительным выходом летучих веществ, сгорают главным образом в слое. Это обстоятельство вызывает сильное повышение температуры слоя и колосниковой решетки, в результате чего может происходить: большой износ колосниковой решетки, плавление шлаков, заливающих колосники и ухудшающих процесс горения.

Для устранения указанных недостатков применяют решетку с малым живым сечением 8...15 %. Этому условию отвечают плитчатые колосники с круглыми отверстиями диаметром 10...12 мм или с продолговатыми отверстиями шириной 6...7 мм и длиной 35...50 мм.

В топке, оборудованной обычной колосниковой решеткой, сжигание антрацитов можно производить на шлаковой подушке, которая будет выполнять, роль решетки с малым живым сечением. Шлаковую подушку, также рекомендуется создавать на колосниках с малым живым сечением, но более тонким слоем, чем на обычных колосниках.

При сжигании антрацита толщина слоя топлива изменяется в зависимости от крупности кусков антрацита и количества мелочи.

Толщину слоя топлива необходимо поддерживать:

-Для антрацита класса AK, AO-150...180 мм; AM, AC-120...150 мм;

АРШ-100...150 мм;

-При сжигании мелких антрацитов, содержащих большое количество штыбов, а также антрацитов, куски которых не выдерживают высоких температур и рассыпаются в мелочь, толщина слоя топлива не должна превышать 100 мм.

Отопление антрацитом нужно вести исключительно равномерным пламенем и самым тонким слоем, какой только допустим при данном сорте топлива. Забрасывать топливо необходимо небольшими порциями. После каждой заброски нужно давать топливу хорошо разгореться и только тогда производить следующую заброску.

Выравнивания слоя антрацита скребком следует избегать и применять как можно реже, чтобы не нарушать связи между отдельными частицами антрацита и не смешивать антрацит со шлаком.

Сортовые антрациты АК, АО сжигаются без применения искусственного дутья; рядовые, а также сорта АМ, АС – с применением искусственного дутья.

При сжигании антрацита необходимо тщательно следить за состоянием колосниковой решетки. При заброске антрацита дутье не следует полностью выключать, а следует немного уменьшить его, так как при полной остановке дутья заливаются воздушные каналы в шлаковой подушке. Это потребует преждевременной чистки топки.

Чистка топки и создание шлаковой подушки производится так же, как и для антрацитов других сортов.

Для предупреждения такого явления следует в топке создавать разрежение воздуха больше обычного за счет открытия шибера или уменьшения дутья.

8. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

8.1 При организации технического обслуживания рекомендуется руководствоваться требованиями раздела 9.2 "Правил устройства и безопасной эксплуатации паровых и водогрейных котлов", ПБ 10-574-03 или других документов.

В процессе эксплуатации котёл должен подвергаться систематическому осмотру не реже одного раза в год. При этом проверяется исправность всех его сборочных единиц. При необходимости следует проводить регулировку и профилактический ремонт сборочных единиц изделия.

При работе котла в зависимости от топлива и режима работы необходимо минимум один раз в 3-7 дней производить очистку поверхностей нагрева от отходов продуктов сгорания. Периодически, но не реже чем через 12 месяцев, производите профилактический осмотр котла и его элементов. При этом обращайте особое внимание на выявление возможных трещин, отдулин, выпучин и коррозии на наружной и внутренней поверхностях стенок, нарушений плотности и прочности сварных соединений, а также повреждений обмуровки. Наиболее уязвимыми зонами являются: колосниковая или водоохлаждаемая решетка, части экранов, подвергаемые наиболее интенсивному обогреву.

При работе котельной установки должен вестись сменный (вахтенный) журнал. В него должны заноситься: работы по обслуживанию оборудования; обнаруженные неисправности и неполадки; рабочие параметры.

- 8.2 Проверка контрольно-измерительных приборов котла, а также автоматических защит, арматуры и питательных насосов должна осуществляться согласно графику осмотра и проверок.
 - 8.3 Удаление загрязнений с поверхностей газовоздушного контура.

Для достижения экономичной эксплуатации, предупреждения коррозии и повреждений, необходимо регулярно проводить очистку поверхностей от сажи и загрязнений, в зависимости от качества топлива и режимов работы, но не реже 1 раза в неделю.

Критерием необходимости чистки могут служить изменения температуры уходящих дымовых газов и увеличение сопротивления газовоздушного контура котла.

При повышении температуры уходящих дымовых газов на 30÷40 °C по сравнению с данной температурой чистого котла (при одной и той же нагрузке) – необходимо провести очистку. Это же касается и той ситуации, когда сопротивление в тракте возрастает настолько, что мощность дымососа становится недостаточной.

Если в котельной установлена группа котлов, объединенных одним газодымовым трактом, т.е. работающих на один дымосос, то чистку поверхностей нагрева следует осуществлять поочередно, прекратив дутье в котел, подвергаемый чистке.

Для очистки конвективных поверхностей нагрева котла, через боковые люки чистки, останов котлоагрегата не обязателен. Для этого снимаются крышки боковых люков и стальной щеткой, закрепленной на длинной рукоятке, производится чистка поверхностей нагрева. Вся сажа и грязь потом удаляются через нижние люки чистки.

8.4 Удаление накипи с поверхностей нагрева водного контура.

Контроль состояния поверхностей нагрева должен выполняться регулярно (не менее чем 1÷2 раза в год). При обнаружении накипи более 0,5 мм следует проводить очистку котла.

ВНИМАНИЕ!

Способы химической очистки от накипи являются единственно возможными для эффективного удаления отложений с внутренних (по водной стороне) поверхностей отопительного контура котлов. Сложность способов заключается в необходимости учета воздействия химических реагентов на материал поверхностей нагрева, прокладок арматуры, и в необходимости утилизации продуктов химической реакции.

Несмотря на большое число различных химических очистителей, большая часть их является кислотами, щелочами, растворителями и комплексонами. Наиболее распространенным до последнего времени является метод химической очистки с использованием ингибированной соляной кислоты. Реже для кислотной очистки применяют хромовую, фосфорную и др. кислоты.

Кислотная очистка является весьма эффективным способом удаления накипи. Однако частого ее применения надо избегать из-за возможной коррозии металла. Кислотную очистку одного и того же котлоагрегата возможно проводить не более 10-12 раз (при температуре раствора 20÷30°С) за весь период эксплуатации. С ростом температуры раствора эффективность удаления отложений возрастает, но при этом также сильно ускоряется коррозия металла.

В связи с особенностями процессов химической очистки, необходимостью соблюдения правил техники безопасности, защиты котла от коррозии, а окружающей среды от нарушения экологических норм необходимо привлекать для очистки только СПЕЦИА-ЛИЗИРОВАННЫЕ ОРГАНИЗАЦИИ, имеющие разрешение (лицензию) на выполнение упомянутых работ и обладающих необходимыми технологиями и оборудованием.

Работы по химической очистке котла должны завершаться гидравлическими испытаниями, для выявления неплотностей, ранее скрытых накипью.

8.5 Ремонт котла.

При организации ремонта рекомендуется руководствоваться требованиями раздела 9.5 "Правил устройства и безопасной эксплуатации паровых и водогрейных котлов", ПБ 10-574-03:

Внимание!

Работы по проведению, каких-либо изменений в конструкции котла или ремонта в течение гарантийного периода могут выполняться только с письменного разрешения Изготовителя.

Ремонтные работы могут выполнять только квалифицированные специалисты, прошедшие соответствующее обучение и имеющие разрешение на изготовление или ремонт котлов, подведомственных органам Ростехнадзора РФ.

8.5.1. Аварийный ремонт (с подваркой обнаруженных течей).

При невозможности длительного вывода котла из эксплуатации в аварийных случаях можно провести временный (срочный) ремонт следующим образом:

- вывести котел из работы;
- закрыть основные задвижки котла на входе и выходе;
- охладить котел до температуры стенки 40÷50 °C;
- слить воду, произвести ремонт.
 - 8.6 Возможные неисправности и способы их устранения.

Основными причинами неисправностей в работе котла могут быть:

нарушение правил обслуживания;

питание загрязненной и особо жесткой водой;

большие перерывы между чистками котла от сажи, нагара и накипи;

использование некондиционного топлива;

неисправность комплектующего оборудования;

естественный износ.

Наиболее типовые неисправности котла и способы их устранения.

Таблица 5.

Неисправность	Вероятная причина	Способ устранения
Недостаточная теплопро- изводительность котла; повышение температуры уходящих дымовых газов	Загрязнение теплообменных поверхностей накипью или сажей; Отсутствие или низкий (высокий) уровень топлива в топке	Очистить поверхности от сажи и накипи; Проверить наличие топлива; Отрегулировать горение; Проверить достаточность количества воздуха для горе-
		ния; Проверить качество воды

Повышение давления во-	Закрыта или вышла из строя	Проверить, отремонтировать
ды в котле, Гидравличе- ские удары	задвижка на выходе воды из котла;	и отрегулировать задвижку; Проверить работу предохра-
	Неисправен предохранитель- ный клапан; Нарушение режи- мов работы	нительного клапана; Провер- ка режимов работы
Падение давления воды	Утечка воды из системы или котла	Выявить и устранить протечку
Выбивание дымовых газов в местах соединения частей газового тракта	Недостаточный прижим уплотнения; Износ уплотнения	Подтянуть прижимные болты уплотнений; Заменить уплотнения
Появление воды в газоходах котла или топке.	Конденсация водяных паров из дымовых газов: -при температуре воды на входе в котел менее 60 °С; -при недостаточной теплоизоляции дымовой трубы; - неплотность (протечка воды) в котле; - низкая температура уходящих дымовых газов	Включить рециркуляцию, поднять температуру до 60°С; Проверить изоляцию дымовой трубы, работу ее дренажа, при необходимости восстановить. Если течь не устраняется, остановить котел, провести расхолаживание, а затем гидроиспытания. Обнаруженную течь устранить путем местной выборки металла и заварки. Настроить режим работы котла.

8.7 Снижение толщины металла труб топочных экранов (Ø159мм) менее 2 мм при рабочем давлении 0,6Мпа (испытательном 0,9 МПа), материале трубы Ст20 является предельным критерием и требует замены данной трубы.

9. УКАЗАНИЯ ПО ПРИМЕНЕНИЮ

- 9.1 Размещение и установка котлов и вспомогательного оборудования должны соответствовать Строительным нормам и правилам, Санитарным нормам, утвержденным Госстроем РФ, ГОСТ 12.1.004, ГОСТ 12.1.005, ГОСТ 12.1.010.
- 9.2 Котлы допускается использовать в системах отопления с номинальным перепадом температур 95 70 °C и с принудительной циркуляцией теплоносителя без прямого водоразбора на ГВС.
- 9.3 Избыточное давление воды на выходе из котла при температуре воды на выходе: 95°C должно составлять не менее 0,15 МПа (1,5кгс/см²);
 - 115°С должно составлять не менее 0,35 МПа (3,5кгс/см²).
- 9.4 В случае хранения котлов в помещениях или на открытой площадке при минусовой температуре **ВОДА ИЗ КОТЛОВ ДОЛЖНА БЫТЬ ПОЛНОСТЬЮ СЛИТА**; патрубки входа и выхода воды, а также дренажные или воздушные патрубки должно быть закрыты для исключения попадания воды через них.

Котлы следует устанавливать на ровной площадке, очищенной от снега и льда. Под каждый котел должны быть уложены деревянные подкладки сечением не менее 100x100 мм.

9.5 Консервацию котлов производить согласно РД 34.20.591-97.

10. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 10.1 Предприятие-изготовитель гарантирует: изготовление котла в соответствии с требованиями ТУ 25.21.12-01-68263952-2017; безопасную эксплуатацию при соблюдении условий хранения, транспортирования, монтажа, пуско-наладки, изложенных в руководстве по эксплуатации на котел, а также «Правил технической эксплуатации тепловых энергетических установок», «Правил устройства и безопасной эксплуатации паровых котлов с давлением пара не более 0,07 МПа (0,7кгс/см²), водогрейных котлов и водоподогревателей с температурой нагрева воды не выше 388 К (115 °C)», СП 89.13330.2012 (СНиП II-35 –76) «Котельные установки» », ТР ТС 010/2011, ТР ТС 032/2013.
- 10.2 Гарантийный срок эксплуатации 18 месяцев со дня ввода котла в эксплуатацию, но не более 24 месяцев со дня отгрузки котла потребителю.
- 10.3 Постановка котла на гарантийное обслуживание осуществляется согласно паспорту на котел.

11. УТИЛИЗАЦИЯ

Котлы, выработавшие свой ресурс, подлежат сдаче в пункты вторсырья в соответствии с их правилами.

12. ДОПОЛНЕНИЕ К РУКОВОДСТВУ ПО ЭКСПЛУАТАЦИИ (ДЛЯ КОТЛОВ С ВОДООХЛАЖДАЕМОЙ УГОЛКОВОЙ РЕШЕТКОЙ)

Применение топки с уголковой водоохлаждаемой решеткой (в дальнейшем топка) позволяет использовать мелкие (менее 13 мм) фракции бурого и каменного угля.

Топка состоит из двух основных частей водоохлаждаемой трубной решетки и короба.

Охлаждаемая решетка представляет собой секцию-гребенку из определенного количества труб, заваренных с торцов общими листами и последовательно соединенных между собой патрубками. Между трубами вварены уголки с четырьмя рядами отверстий диаметром 6 мм для прохода воздуха. Охлаждаемая решетка включается в водную систему котла параллельно с фронтальным экраном.

Сварной короб изготовлен из стального листа. Верхняя открытая сторона (грань) короба предназначена для установки и приварки охлаждаемой решетки. На переднюю торцевую стенку короба устанавливается дверка выгреба золы.

Короб служит для равномерного распределения дутьевого воздуха по площади решетки.

Из обязательного комплекта поставки котла, укомплектованного топкой с уголковой водоохлаждаемой решеткой, исключаются чугунные колосники.

На подводящем воздуховоде установить заслонку.

Подачу дутьевого воздуха в короб, возможно, осуществить с задней стороны котла (топки). Для этого до кладки постамента в задней стенке короба топки (по оси симметрии) вырезать отверстие 190х240мм, подготовить воздуховод сечением 200х250мм, длиной 850 мм, используя фланец наддува, приварить воздуховод к коробу и произвести кладку постамента, не допуская щелей между коробом и кладкой.